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Physics targets:
● Simulation of quantum chromodynamics

● Hadronization
● Microscopic understanding of nuclear interactions

● Complete phase diagram of QCD
● Equation of state for nuclear matter

How to make these predictions?
● Nonperturbative problems

➔ Numerically simulate QCD degrees of freedom

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Big picture

https://doi.org/10.1016/j.physa.2014.11.005


Jesse Stryker Gauge invariant Trotterization via shears Iowa State Univ. 2021-02-17 3

Traditional lattice field theory
● Defines a field theory nonperturbatively

● Spacetime discretized with a lattice (e.g. square, 
cubic, hypercubic)

● Matter particles such as quarks are described “live” 
on the sites

● Gauge bosons live on oriented links joining sites

● Gauge fields belonging to some Lie group–the 
“gauge group” G
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Wilson’s gauge action, SW

for non-Abelian
● In classical simulations, exp(-SW) acts like a probably weight for the 

configuration

● Real-time dynamics and nonzero baryon density both suffer from ‘sign 
problems’ in classical simulations

“plaquette” operator

Traditional lattice field theory
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Classical problems.. quantum solutions?
Digital quantum computers:

General problem:

How to map a Hilbert 

space          , and          , on to

qubits & quantum gates?

● Unitary gates:       with Hamiltonian of 
interest

● Want to simulate nonperturbative gauge 
theory
➔ Gauge theory on the lattice
➔ Hamiltonian lattice gauge theory

● Has no apparent sign problems
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Gate-based quantum computing model
Two state, qubit system – computational basis Two qubit basis: |00>, |01>, |10>, |11>

Nielsen & Chuang (2001)
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Hamiltonian lattice gauge theory
Lattice gauge theory Hilbert space structure
● An Abelian group, U(1)

electric 
representation or

“momentum” basis

group element 
or “coordinate” 

basis for link

Quantized with canonical, same-link 
commutation relations.

“U  raises E”

Gauge transformations:

Kogut & Susskind (1975); Creutz (1983), Smit (2002)
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Lattice gauge theory Hilbert space structure
● Non-Abelian group, e.g. SU(2)

 representation
basis

group element 
basis

canonical, same-link 
commutation relations

Gauge transformations:
Left and right electric fields 
each have ‘colored’ 
components in addition to 
spatial components

True gluons would have 8 such 
components

“Left” and “right” electric fields to generate 
the independent left/right rotations.

3-sphere graphic credit: © 2006 by Eugene Antipov Dual-licensed under the GFDL and CC BY-SA 3.0

Hamiltonian lattice gauge theory

http://creativecommons.org/licenses/by-sa/3.0/
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Lattice gauge theory Hilbert space structure
● Non-Abelian group, e.g. SU(2)

Non-Abelian Hamiltonian“U adds representations”

SU(2) example for the 2x2 link operator
Zohar & Burrello (2015)

Hamiltonian lattice gauge theory
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Plus Gauss law constraints

Gauss’s law

charge 
conservation

gauge 
invariance

U(1)

SU(N)

compact U(1)
electric eigenbasis

Hamiltonian lattice gauge theory
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● Qubits wasted on physical states

● Non-Abelian constraints mean individual basis states are 
virtually never allowed by themselves

● Quantum noise will create components along unphysical 
directions

● Gauge invariance not necessarily respected by algorithms, even 
for noiseless simulation

Potential issues simulating KS formulation
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Off-diagonal gauge invariant operators

● Gauge invariant terms, e.g. hopping term, change multiple quantum numbers 
simultaneously

● Increments on a binary register (E register) involve every qubit
● Naive Pauli decompositions quickly blow up in number of terms

● U(1) plaquette w/ two-qubit cutoff: 922 Pauli term
● Approximation via “sub-Trotter steps” liable to have unphysical transitions
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● Schwinger model Martinez et al (2016); Klco et al (2018)
Shaw, Lougovski, JRS, Wiebe (2020)

Schwinger model hopping term (2020)
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Schwinger model hopping term: Shears
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Schwinger model hopping term: Circuit
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U(1) or Z(N) Plaquette
● Four link plaquette

● Off-diagonal on four registers
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● Consider a two-link “plaquette”

Toy plaquette
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● The couplings can be 
expressed as a sum of two 
terms

Toy plaquette
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Toy plaquette: Circuit
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Outlook
● The true, four-link plaquette is solved using shears in a 4D space
● Shearing appears to work when gauge constraints are simultaneously 

diagonalizable
● Can characterize each matrix element of H as an allowed or unallowed 

transition
● Off-diagonal, product of ladder operators + shearing → Controlled 

ladder operator on one quantum number
● Can use sub-Trotter steps safely as long as we reproduce all the 

allowed transitions
● Non-Abelian? SU(2)?

● Kogut-Susskind – unlikely to help
● Loop-String-Hadron has Abelian (commuting) constraints



Jesse Stryker Gauge invariant Trotterization via shears Iowa State Univ. 2021-02-17 21

Loop-String-Hadron

Raychowdhury & Stryker (2020)

● Loop-String-Hadron has formal 
lattice consisting of ‘quark sites’ and 
‘gluonic sites’
● Quark sites have a local basis
● Gluonic sites have a local basis

Constraints known as 
“Abelian Gauss Law”: 
Abelian flux must be 
conserved along each 
link
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Summary
● Off-diagonal terms such as hopping terms in Schwinger model or 

plaquette operators in d>1 U(1) gauge theories require correlated changes 
of quantum numbers

● Shears can help change basis such that off-diagonal operators change one 
quantum number only
● Other registers may still be involved — as controls

● Commuting constraints and Cartesian ‘space of quantum numbers’ seem 
key

● Non-Abelian will no doubt be harder, but there is reason to be optimistic
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