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Checklist for quantum simulation of QCD

 Digital quantum simulation (DQS) of lattice QCD requires protocols for...
- initial state preparation
- time evolution
— observable measurement
« Error quantification
e Here, lattice QCD means...
- SU(3) interactions
- =2 quarkflavors
- 3D spatial lattice

 First-principles framework: Hamiltonian (non-Abelian) lattice gauge theory
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Hamiltonian lattice gauge theory

* Temporal gauge, continuous-time limit - Kogut-Susskind Hamiltonian formulation

* Gauge fields on spatial links with on-link Hilbert spaces Phys. Rev. D 11, 395 (1975)
* E.g., SU(2) 4
Left and right electric
fields each have color- /
: charge components,
<g|‘7’ e, m > in addition to spatial
4 components
group-
element 8 3
basis [EL/R’EL/R- =if" WEL/R
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Gauge transformations: Uy.; — Q.U ZQn+e (B2, U] = _(Ta(“])mm
* Rotations from the left (Q,) and right (Q....) are [T s U] = [Unm ’Ull/] —0

generated by “left” and “right” electric fields

RSz, canonical commutation relations for a link
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Hamiltonian lattice gauge theory

Plus Gauss law constraints
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Formulations & bases

* Hamiltonian lattice gauge theories seem to enjoy lots of different formulations

* Hamiltonian “formulation” meaning... *
- set of degrees of freedom - usually local
- set of fields used to construct Hamiltonian/observables
- algebraic (commutation) relations
— constraints

- (optional truncation scheme)

o * my current working definition of formulation; subject to refinement!
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Formulations & bases

* Formulation != basis

- But: Some formulations are often associated with or defined w.r.t. a
particular basis

- Colloquially, different bases are at times called different “formulations” too...

* A formulation isn't intrinsically tied to a particular Hamiltonian either - different
choices are possible!

- In practice, there usually is an implicit or explicit choice

- Can't really do much with a formulation until at least one Hamiltonian has
been spelled out

* All bases in use (known to me) are either electric or magnetic

Q
IRy LAY



N

Formulations & bases: Examples
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Kogut-Susskind formulation .
- Irrep/"angular momentum” basis

Byrnes, Yamamoto, Zohar, Burrello, et al.

- Group-element basis Zohar, NuQS collab., et al.
Gauge magnets/quantum link models

Wiese, Chandrasekharan, et al.

Tensor lattice field theory

Meurice, Sakai, Unmuth-Yockey, et al.

Dual/rotor formulations Kaplan, JRS, Haase,
Dellantonio, et al., Bauer, Grabowska, Kane

Casimir variables / “local-multiplet basis”

Klco, Savage, JRS, Ciavarella

Purely fermionic formulations (1+1D & OBC)
Muschik, Atas, Zhang, IQuS@UW group, Powell, et al.
Prepotential/Schwinger boson formulations
Mathur, Anishetty, Raychowdhury, et al.

Loop-string-hadron formulation
Raychowdhury, JRS, Davoudi, Shaw, Dasqupta,
Kadam
Light-front formulation
Kreshchuk, Kirby, Love, Yao, et al.
Qubit models Chandrasekharan, Singh, et al.
g-deformed Kogut-Susskind
Zache, Gonzdlez-Cuadra, Zoller
Scalar field theory...
- Harmonic oscillator basis
Klco & Savage
- Single-particle basis
Barata, Mueller, Tarasov, Venugopalan
- Future gauge-field generalizations??
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Choice of basis

Most common basis choice: Electric/irrep

Electric-basis pros Electric-basis cons

* States naturally discretized (for * Better-suited to strong coupling
compact Lie groups) (opposite of continuum QCD)

« Gauss's law a function of electric * Many off-diagonal operators in
fields 3+1 Hamiltonian

* Natural “UV" truncation scheme
* Easily translates to truncating
operators
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Electric truncation

* Lie group Hilbert spaces are locally infinite-dimensional

* Digital quantum simulation requires truncations
- Common choices: Finite subgroups, electric cutoff on irreps

Provably accurate simulation of gauge theories and bosonic

systems

Yu Tong!?, Victor V. Albert?, Jarrod R. McClean!, John Preskill*®, and Yuan Su®*

* Tongetal., 22:

- formal analysis on error in time evolution operator

- U(1) and SU(2) LGTs considered
- Find: For fixed error € and lattice parameters, required electric

cutoff grows at worst linearly in time T and polylog(1/¢)
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Choice of basis

Group-element basis pros Group-element basis cons

* Link operators are diagonalized * Limited number of reqular
* No Clebsch-Gordon coefficients subgroups for SU(N)

* Well-suited for weak-coupling limit * Limited “resolution” with

subgroups
* 120 elements for SU(2)
* 1080 for SU(3) [NuQS collab.]
* Subsets generally do not
preserve gauge symmetry
* Electric fields become tricky

Amsterdam. © Dmitry Feichtner-Kozlov
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Choice of basis

* E%EC%is Laplace-Beltrami differential operator on the group manifold

* How to define derivatives on a subgroup or discrete subset? How to
preserve gauge invariance?

* Only recently has this question been taken up by some groups in the
context of quantum simulation

Fig. 1 Fibonacci lattices on $»
Jakobs, Garofalo, et al. with 20 (blue), 100 (orange) and
2304.02322 500 (green) vertices
Mariani, Pradhan, and Ercolessi.
[2301.12224]
Ji, Lamm, and Ju.
Phys. Rev. D 102, 114513 (2020)

Figure by
Hartung, Jakobs, Jansen,
Ostmeyer, and Urbach.
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https://arxiv.org/abs/2301.12224
https://doi.org/10.1103/PhysRevD.102.114513
https://doi.org/10.1140/epjc/s10052-022-10192-5

Loop-string-hadron formulations
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Loop-string-hadron
formulation is derived
from Schwinger-boson

. r—1
formulation but uses . :
fewer bosonic DOFs per
site. Elementary fields are
strictly SU(2) invariant
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Loop-string-hadron formulations

LSH operators define an SU(2)-singlet basis

-

* Take a reference state, e.g., 0 flux & 0 fermions ¢
* Act locally with any product of LSH operators LSH states subject to
* Result is SU(2)-invariant Abelian Gauss faw
|n,n; = 0,n, =0) = (LTT)"]0) E— —
- ny S ny
Ing,ni = 0,n, =1) = (LY7)"S5|0) o Ny =Nit+ N,
n, =0,n,=0 n, =0, n,=1 N, =N, +N,(1-N))
|n;,n; = 1,n, =0)=(LT7)uS70)
Neg=N;+N;(1-N,)
lngng = 1.n, = 1) = (LTF)"HTF|0) — } — }
ny ny
—— —
ni=1mn,=0 ni=1n,=1
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SU(2) LSH & quantum computation

Hamiltonian in operator-factorized form is the input for developing simulation
algorithms

Advantages

> Simultaneously diagonalizable

> LSH basis states are individually definitely allowed or definitely unallowed,
unlike other formulations

Hilbert space is structure is far simpler than |jmm’ states

Hamiltonian structure looks more similar to U(1)

Clebsch-Gordons recast as SHO scaling factors
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SU(2) LSH & quantum computation

Ci rcu itS fo r LS H CO n Stra i nts PHYSICAL REVIEW RESEARCH 2, 033039 (2020)
in any number of
dimensions, are worked out
I n d eta I | Jesse R. Stryker®F

. Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA
Speedups likely needed to

® (Received 22 April 2020; accepted 4 June 2020; published 9 July 2020)

m a ke p O S S i b | e i n N IS Q e ra ‘We show that using the loop-string-hadron (LSH) formulation of SU(2) lattice gauge theory (I. Raychowdhury

and J. R. Stryker, Phys. Rev. D 101, 114502 (2020)) as a basis for di quantum computation e:
an important problem of fundamental interest: implementing gauge invariance (or Gauss’s law) exactly. We first

Solving Gauss’s law on digital quantum computers with loop-string-hadron digitization

Indrakshi Raychowdhury”
Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
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Potential LSH drawbacks: o
Hs in d>1 has many terms

Can cost more qubits in d>1
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1+1 SU(2): LSH vs Schwmger bosons

Schwinger bosons

log (T count) at A = 1072
3.0fgrs :
./15

(SB)

14/

logo(x)

T-gate costs at fixed m/g=1.

log,((T count) at A = 1072 (LSH)

13

log;((x)

Other simulation parameters not

explicitly shown are n =38, t/as = 1, Qmor. = 90%, Qnewt. = 9%, and Asynth.

=1%.

zn L tlas A amor. ONewt. | Qubits T gates | Qubits Tt,ates
1 4 100 1 0.00 90% 9% [ 2626 8.19713 x 1011] 1319 3.91817 x 1010
1 4 100 1 0.001 90% 9% | 2704 3.09951 x 10'2| 1397  1.5172 x 10!
1 4 100 10 0.00 90% 9% | 2704  3.0993 x 10'3| 1397 1.51643 x 102
1 4 100 10 0.001 90% 9% | 2808  1.2146 x 10**| 1475 5.76229 x 102
1 41000 1 0.00 90% 9% | 18904 3.12769 x 10**| 6797 1.53099 x 102
1 41000 1 0.001 90% 9% | 19008 1.22564 x 10| 6875 5.81562 x 102
1 4 1000 10 0.01 90% 9% | 19008 1.22564 x 10*°| 6875 5.81468 x 10'?
1 4 1000 10 0.001 90% 9% | 19086 4.48657 x 10*°| 6979 2.29217 x 10'*
1 8 100 1 001 90% 9% | 4398 5.79224 x 10" | 1807 2.72735 x 10!
1 8 100 1 0.001 90% 9% | 4476  2.1482 x 10*3| 1885 1.03709 x 10*2
1 8 100 10 0.01 90% 9% | 4476 2.14816 x 10*| 1885 1.03705 x 10'?
1 & 100 10 0.001 90% 9% | 4580 8.22615 x 10'| 1963 3.87886 x 10'?
1 8 1000 1 0.00 90% 9% | 35076 2.16773 x 10**| 10885 1.04652 x 10'?
1 8 1000 1 0.001 90% 9% | 35180 8.30098 x 10™| 10963 3.91414 x 103
1 8 1000 10 0.01 90% 9% | 35180 8.30094 x 10'®| 10963 3.91412 x 10'*
1 8 1000 10 0.001 90% 9% | 35258 2.99214 x 10'¢| 11067 1.5154 x 10'°
~20x T gate reduction with LSH
e\qgksnko
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Z. Davoudi, A.F. Shaw, &S
arXiv:2212.14030



Digital simulations: SU(2)

PHYSICAL REVIEW D 101, 074512 (2020)

SU(2) non-Abelian gauge field theory in one dimension
on digital quantum computers

Natalie Klco®,” Martin J. Savage®,” and Jesse R. Stryke

Institute for Nuclear Theory, University of Washington, Seattle, Washington 9¢

Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum

Computer

e 7 . _ 2.3
Angus Kan' and Yunseong Nam??

Article ‘ Open Access ‘ Published: 11 November 2021

SU(2) hadrons on a quantum computer via a variational
approach

Yasar Y. Atas &, Jinglei Zhang &7, Randy Lewis, Amin Jahanpour, Jan F. Haase &3 & Christine A. Muschik

Nature Communications 12, Article number: 6499 (2021) \ Cite this article

QERSIT,
S 5
)

S
18 k. 56

2, Q
TRy LS



Digital simulations: SU(3)

PHYSICAL REVIEW D 103, 094501 (2021)

Trailhead quantum simulation of SU(3) Yang-Mills lattice gauge the
in the local multiplet basis

Anthony Ciavarella®,"” Natalie Kico 2" and Martin J. Savage®'

PHYSICAL REVIEW D 104, 094514 (2021)

Lattice Quantum Chron amics and Electrodynamics on a Universal Quantum

Quantum algorithms for transport coefficients in gauge theories Computer
RS, ~ 1. . - 2,% . PR o 3E S bar Vamarehi . .
Thomas D. Cohen,” Henry Lamm, ott Lawrence, and Yukari Yamauchi Angus Kan! and Yunseong Nam

(NuQS Collaboration)

PHYSICAL REVIEW D 105, 074504 (2022)

Preparation of the SU(3) lattice Yang-Mills vacuum
with variational quantum methods

Anthony N. lla and Ivan A. Chernyshev

November 2021

Bublished: 11 Nove nier 2021 . L. PHYSICAL REVIEW D 107, 054513 (2023)
SU(2) hadrons on a quantum computer via a variational

approach
Jinglei Zhang &3, Randy Lewis, Amin Jahanpour, Jan F. Haase &3 & Christine A. M Preparations for quantum simulations of quantum chromodynamics
Nature Communications 12, Article number: 6499 (2021) | C ticle in 1+1 dimensions. II. Single-baryon f-decay in real time
Roland C. Farrell®,"" Ivan / rmys ! M. Powell®,>* Nikita A. Zemlevskiy®,"*
t
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Summary: Progress toward QCD

arXiv ID Author  Author Author  Author  Title U(1) SU(2)SU(3) | NF

quant-ph/0510027 Byrnes Yamamoto Simulating Lattice Gauge Theories on a Quantum Computer

i
o

3D | evol. prep. meas.

()<
&

o 0
]

1605.04570 Martinez  Muschik Schindler et al. Real-Time Dynamics of Lattice Gauge Theories with a Few-Qubit Quantum Computer

1803.03326 Klco Dumitrescu McCaskey et al. Quantum-Classical Computation of Schwinger Model Dynamics Using Quantum Computers

(<
(<

1908.06935 Klco Savage JRS SU(2) Non-Abelian Gauge Field Theory in One Dimension on Digital Quantum Computers
2001.00698 Kharzeev Kikuchi Real-Time Chiral Dynamics from a Digital Quantum Simulation

<]

2002.11146 sShaw, AF  Lougovski JRS Wiebe Quantum Algorithms for Simulating the Lattice Schwinger Model

2005.10271 Mathis Mazzola Tavernelli Toward Scalable Simulations of Lattice Gauge Theories on Quantum Computers
2101.10227 Ciavarella Klco Savage Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge Theory in the Local Mul
2102.08920 Atas Zhang, J Lewis, R etal. SU(2) Hadrons on a Quantum Computer via a Variational Approach

00O

2104.02024 Cohen, T Lamm Lawrence Yamauchi Quantum algorithms for transport coefficients in gauge theories

2107.12769 Kan Nam, Y Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer

[JJ <
&

2110.06942 Tong, Y Albert, V McClean etal. Provably Accurate Simulation of Gauge Theories and Bosonic Systems
2112.09083 Ciavarella Chernyshev Preparation of the SU(3) Lattice Yang-Mills Vacuum with Variational Quantum Methods

O

2206.12454 Clemente Crippa Jansen Strategies for the Determination of the Running Coupling of (2+1)-dimensional QED with Qu{

2207.01731 Farrell Chernyshev Powell, S ) Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (1)

&

2207.03473 Atas Haase Zhang, J | Real-Time Evolution of SU(3) Hadrons on a Quantum Computer
2209.10781 Farrell Chernyshev Powell, S . Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II)

2211.10497 Kane Grabowska Nachman Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constrair

SRR RRAAARA0RAA

BOO0O0O0O

2212.14030 Davoudi Shaw, AF  JRS General Quantum Algorithms for Hamiltonian Simulation with Applications to a Non-Abelian

A selection of papers that have advanced the field closer to DQS of lattice QCD. Checkmarks indicate applicability to a given feature.

Green indicates key milestones; gold indicates end-goals of a complete lattice QCD simulation.
Notable omissions: scalar field theory, finite groups, formal developments, analog simulations.

evol. = time evolution, prep. = nontrivial state preparation, meas. = nontrivial observable measurement, alg. = constructive
algorithms, QPU = includes hardware implementation.

o, IMpressive progress, but scaling hardware beyond 1-2 sites and lowest cutoffs - not worked out yet
NP

2, Q
TRy LA



Takeaway messages

* Theory developments and algorithms are still in very early stages

* Many different interesting questions to address:
Gauss's law, basis choice, truncations, simulation protocols

* These are vibrant research directions and we are learning more

about gauge theories every day - even before quantum-advantage
simulations
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