# Formal and algorithmic developments for quantum-simulating non-Abelian and higher-dimensonal gauge theories

Jesse Stryker

Maryland Center for Fundamental Physics University of Maryland, College Park

"Toward Quantum Advantage in High-Energy Physics" workshop MIAPbP, 2023-04-20

### Checklist for quantum simulation of QCD

- Digital quantum simulation (DQS) of lattice QCD requires protocols for...
  - initial state preparation
  - time evolution
  - observable measurement
- Error quantification
- Here, lattice QCD means...
  - SU(3) interactions
  - $\geq 2$  quark flavors
  - 3D spatial lattice
- First-principles framework: Hamiltonian (non-Abelian) lattice gauge theory



## Hamiltonian lattice gauge theory

- Temporal gauge, continuous-time limit → Kogut-Susskind Hamiltonian formulation
- Gauge fields on spatial links with on-link Hilbert spaces
- E.g., SU(2)



Left and right electric fields each have colorcharge components, in addition to spatial components

Phys. Rev. D 11, 395 (1975)

$$\begin{split} [\hat{E}_{L/R}^{\alpha}, \hat{E}_{L/R}^{\beta}] &= i f^{\alpha \beta \gamma} \hat{E}_{L/R}^{\gamma} \\ [\hat{E}_{R}^{\alpha}, \hat{U}_{mm'}] &= \left( \hat{U} T^{\alpha} \right)_{mm'} \\ [\hat{E}_{L}^{\alpha}, \hat{U}_{mm'}] &= - \left( T^{\alpha} \hat{U} \right)_{mm'} \\ [\hat{U}_{mm'}, \hat{U}_{ll'}] &= [\hat{U}_{mm'}, \hat{U}_{ll'}^{\dagger}] = 0 \end{split}$$

### canonical commutation relations for a link

3-sphere graphic credit: @ 2006 by Eugene Antipov Dual-licensed under the GFDL and CC BY-SA 3.0

Gauge transformations:  $\hat{U}_{n,i} \rightarrow \Omega_n \hat{U}_{n,i} \Omega_{n+e_i}^{\dagger}$ 

 Rotations from the left (Ω<sub>n</sub>) and right (Ω<sub>n+ei</sub>) are generated by "left" and "right" electric fields

Jesse Stryker

# Hamiltonian lattice gauge theory



4

### Formulations & bases

- Hamiltonian lattice gauge theories seem to enjoy lots of different formulations
- Hamiltonian "formulation" meaning... \*
  - set of degrees of freedom usually local
  - set of fields used to construct Hamiltonian/observables
  - algebraic (commutation) relations
  - constraints

esse Stryker

(optional truncation scheme)

\* my current working definition of formulation; subject to refinement!



### Formulations & bases

- Formulation != basis
  - But: Some formulations are often associated with or defined w.r.t. a particular basis
  - Colloquially, different bases are at times called different "formulations" too...
- A formulation isn't intrinsically tied to a particular Hamiltonian either different choices are possible!
  - In practice, there usually is an implicit or explicit choice
  - Can't really do much with a formulation until at least one Hamiltonian has been spelled out
- All bases in use (known to me) are either <u>electric</u> or <u>magnetic</u>



### Formulations & bases: Examples

- Kogut-Susskind formulation
  - Irrep/"angular momentum" basis Byrnes, Yamamoto, Zohar, Burrello, et al.
  - Group-element basis Zohar, NuQS collab., et al.
- Gauge magnets/quantum link models Wiese, Chandrasekharan, et al.
- Tensor lattice field theory Meurice, Sakai, Unmuth-Yockey, et al.
- Dual/rotor formulations Kaplan, **JRS**, Haase, Dellantonio, et al., Bauer, Grabowska, Kane
- Casimir variables / "local-multiplet basis" Klco, Savage, **JRS**, Ciavarella
- Purely fermionic formulations (1+1D & OBC) Muschik, Atas, Zhang, IQuS@UW group, Powell, et al.
- Prepotential/Schwinger boson formulations Mathur, Anishetty, Raychowdhury, et al.

- Loop-string-hadron formulation Raychowdhury, JRS, Davoudi, Shaw, Dasgupta, Kadam
- Light-front formulation Kreshchuk, Kirby, Love, Yao, et al.
- Qubit models Chandrasekharan, Singh, et al.
- *q*-deformed Kogut-Susskind Zache, González-Cuadra, Zoller
- Scalar field theory...
  - Harmonic oscillator basis
     Klco & Savage
  - Single-particle basis
     Barata, Mueller, Tarasov, Venugopalan
  - Future gauge-field generalizations??



### **Choice of basis**

Most common basis choice: Electric/irrep

Electric-basis <u>pros</u>

- States naturally discretized (for compact Lie groups)
- Gauss's law a function of electric fields
- Natural "UV" truncation scheme
  - Easily translates to truncating operators

Electric-basis <u>cons</u>

- Better-suited to strong coupling (opposite of continuum QCD)
- Many off-diagonal operators in 3+1 Hamiltonian



### **Electric truncation**

- Lie group Hilbert spaces are locally infinite-dimensional
- Digital quantum simulation requires truncations
  - Common choices: Finite subgroups, electric cutoff on irreps

• Tong et al., '2<u>2:</u>

Provably accurate simulation of gauge theories and bosonic systems

Yu Tong<sup>1,2</sup>, Victor V. Albert<sup>3</sup>, Jarrod R. McClean<sup>1</sup>, John Preskill<sup>4,5</sup>, and Yuan Su<sup>1,4</sup> April 4th, 2022

- formal analysis on error in time evolution operator
- U(1) and SU(2) LGTs considered
- Find: For fixed error ε and lattice parameters, required electric cutoff grows at worst linearly in time T and polylog(1/ε)



### Choice of basis

Group-element basis pros

- Link operators are diagonalized
- No Clebsch-Gordon coefficients
- Well-suited for weak-coupling limit



A detail of Spinoza monument in Amsterdam. © Dmitry Feichtner-Kozlov

### Group-element basis <u>cons</u>

- Limited number of regular subgroups for SU(N)
  - Limited "resolution" with subgroups
  - 120 elements for SU(2)
  - 1080 for SU(3) [NuQS collab.]
- Sub*sets* generally do not preserve gauge symmetry
- Electric fields become tricky



### Jesse Stryker

### **Choice of basis**

- E<sup>a</sup>E<sup>a</sup> is Laplace-Beltrami differential operator on the group manifold
- How to define derivatives on a subgroup or discrete subset? How to preserve gauge invariance?
- Only recently has this question been taken up by some groups in the context of quantum simulation

Jakobs, Garofalo, et al. 2304.02322 Mariani, Pradhan, and Ercolessi. [2301.12224] Ji, Lamm, and Ju. Phys. Rev. D 102, 114513 (2020) **Fig. 1** Fibonacci lattices on  $S_2$  with 20 (blue), 100 (orange) and 500 (green) vertices

Figure by Hartung, Jakobs, Jansen, Ostmeyer, and Urbach. Eur. Phys. J. C (2022) 82:237





### Loop-string-hadron formulations

PRD '20  $\hat{\Gamma}(r+1), \hat{n}_{\ell}(r+1)$  $\hat{\Gamma}(r), \hat{n}_{\ell}(r)$  $\hat{\chi}_i(r+1), \overline{\hat{\chi}_o(r+1)}, \hat{n}_i(r+1), \overline{\hat{n}_o(r+1)}$  $\hat{\chi_i}(r), \hat{\chi_o}(r), \hat{n_i}(r), \hat{n_o}(r)$ Loop-string-hadron  $n_{\ell} = 0, 1, 2,$ formulation is derived from Schwinger-boson r+1formulation but uses fewer bosonic DOFs per  $n_i n_o$ site. Elementary fields are 0 0 strictly SU(2) invariant 0 1  $1 \ 0$ 



esse Stryker

Formal & algorithmic developments for . . . gauge theories

Ravchowdhurv & Strvker.

### Loop-string-hadron formulations

LSH operators define an SU(2)-singlet basis

- Take a reference state, e.g., 0 flux & 0 fermions
- Act locally with any product of LSH operators
- Result is SU(2)-invariant

esse Stryker

$$egin{aligned} &||n_l, n_i = 0, n_o = 0
angle \equiv (\mathcal{L}^{++})^{n_l}|0
angle \ &||n_l, n_i = 0, n_o = 1
angle \equiv (\mathcal{L}^{++})^{n_l}\mathcal{S}_{ ext{out}}^{++}|0
angle \ &||n_l, n_i = 1, n_o = 0
angle \equiv (\mathcal{L}^{++})^{n_l}\mathcal{S}_{ ext{in}}^{++}|0
angle \ &||n_l, n_i = 1, n_o = 1
angle \equiv (\mathcal{L}^{++})^{n_l}\mathcal{H}^{++}|0
angle \end{aligned}$$



LSH states subject to "Abelian Gauss law"

 $n_i$ 



Formal & algorithmic developments for . . . gauge theories

 $-1, n_{o}$ 

 $T_{li}$  =

# SU(2) LSH & quantum computation

Hamiltonian in operator-factorized form is the input for developing simulation algorithms

### <u>Advantages</u>

- All constraints are Abelian
  - Simultaneously diagonalizable
  - LSH basis states are individually definitely allowed or definitely unallowed, unlike other formulations
- Hilbert space is structure is far simpler than |jmm'> states
- Hamiltonian structure looks more similar to U(1)
- Clebsch-Gordons recast as SHO scaling factors
- First SU(2) physicality quantum circuits constructed (Raychowdhury & JS 2020)



Jesse Stryker Formal & algorithmic developments for . . . gauge theories

# SU(2) LSH & quantum computation

- Circuits for LSH constraints, in any number of dimensions, are worked out in detail
- Speedups likely needed to make possible in NISQ era

Potential LSH drawbacks:

- $H_B$  in d>1 has **many** terms
- Can cost more qubits in d>1

#### PHYSICAL REVIEW RESEARCH 2, 033039 (2020)

#### Solving Gauss's law on digital quantum computers with loop-string-hadron digitization

Indrakshi Raychowdhury<sup>\*</sup> Maryland Center for Fundamental Physics and Department of Physics, University of Maryland, College Park, Maryland 20742, USA

> Jesse R. Stryker o<sup>†</sup> Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195, USA

(Received 22 April 2020; accepted 4 June 2020; published 9 July 2020)

We show that using the loop-string-hadron (LSH) formulation of SU(2) lattice gauge theory (I. Raychowdhury and J. R. Stryker, Phys. Rev. D **101**, 114502 (2020)) as a basis for digital quantum computation easily solves an important problem of fundamental interest: implementing gauge invariance (or Gauss's law) exactly. We first





Jesse Stryker

Formal & algorithmic developments for . . . gauge theories

## 1+1 SU(2): LSH vs Schwinger bosons

|   |        |      |         |          |                           |                         | Schw   | vinger bosons            |        | LSH                      |
|---|--------|------|---------|----------|---------------------------|-------------------------|--------|--------------------------|--------|--------------------------|
| x | $\eta$ | L    | $t/a_s$ | $\Delta$ | $\alpha_{\mathrm{Trot.}}$ | $\alpha_{\text{Newt.}}$ | Qubits | T gates                  | Qubits | T gates                  |
| 1 | 4      | 100  | 1       | 0.01     | 90%                       | 9%                      | 2626   | $8.19713 	imes 10^{11}$  | 1319   | $3.91817 \times 10^{10}$ |
| 1 | 4      | 100  | 1       | 0.001    | 90%                       | 9%                      | 2704   | $3.09951 	imes 10^{12}$  | 1397   | $1.5172\times10^{11}$    |
| 1 | 4      | 100  | 10      | 0.01     | 90%                       | 9%                      | 2704   | $3.0993\times10^{13}$    | 1397   | $1.51643 	imes 10^{12}$  |
| 1 | 4      | 100  | 10      | 0.001    | 90%                       | 9%                      | 2808   | $1.2146\times10^{14}$    | 1475   | $5.76229 	imes 10^{12}$  |
| 1 | 4      | 1000 | 1       | 0.01     | 90%                       | 9%                      | 18904  | $3.12769 \times 10^{13}$ | 6797   | $1.53099 	imes 10^{12}$  |
| 1 | 4      | 1000 | 1       | 0.001    | 90%                       | 9%                      | 19008  | $1.22564 \times 10^{14}$ | 6875   | $5.81562 \times 10^{12}$ |
| 1 | 4      | 1000 | 10      | 0.01     | 90%                       | 9%                      | 19008  | $1.22564 \times 10^{15}$ | 6875   | $5.81468 \times 10^{13}$ |
| 1 | 4      | 1000 | 10      | 0.001    | 90%                       | 9%                      | 19086  | $4.48657 \times 10^{15}$ | 6979   | $2.29217 \times 10^{14}$ |
| 1 | 8      | 100  | 1       | 0.01     | 90%                       | 9%                      | 4398   | $5.79224 \times 10^{12}$ | 1807   | $2.72735 \times 10^{11}$ |
| 1 | 8      | 100  | 1       | 0.001    | 90%                       | 9%                      | 4476   | $2.1482 \times 10^{13}$  | 1885   | $1.03709 \times 10^{12}$ |
| 1 | 8      | 100  | 10      | 0.01     | 90%                       | 9%                      | 4476   | $2.14816 \times 10^{14}$ | 1885   | $1.03705 \times 10^{13}$ |
| 1 | 8      | 100  | 10      | 0.001    | 90%                       | 9%                      | 4580   | $8.22615 \times 10^{14}$ | 1963   | $3.87886 \times 10^{13}$ |
| 1 | 8      | 1000 | 1       | 0.01     | 90%                       | 9%                      | 35076  | $2.16773 \times 10^{14}$ | 10885  | $1.04652 \times 10^{13}$ |
| 1 | 8      | 1000 | 1       | 0.001    | 90%                       | 9%                      | 35180  | $8.30098\times10^{14}$   | 10963  | $3.91414 	imes 10^{13}$  |
| 1 | 8      | 1000 | 10      | 0.01     | 90%                       | 9%                      | 35180  | $8.30094 \times 10^{15}$ | 10963  | $3.91412 \times 10^{14}$ |
| 1 | 8      | 1000 | 10      | 0.001    | 90%                       | 9%                      | 35258  | $2.99214 \times 10^{16}$ | 11067  | $1.5154 \times 10^{15}$  |



T-gate costs at fixed m/g=1. Other simulation parameters not explicitly shown are  $\eta = 8$ ,  $t/\alpha_s = 1$ ,  $\alpha_{\text{Trot.}} = 90\%$ ,  $\alpha_{\text{Newt.}} = 9\%$ , and  $\alpha_{\text{synth.}} = 1\%$ .

Z. Davoudi, A.F. Shaw, & JS arXiv:2212.14030

### ~20x T gate reduction with LSH



Jesse Stryker

Formal & algorithmic developments for ... gauge theories

### Digital simulations: SU(2)

PHYSICAL REVIEW D 101, 074512 (2020)

#### SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers

Natalie Klco<sup>®</sup>,<sup>\*</sup> Martin J. Savage<sup>®</sup>,<sup>†</sup> and Jesse R. Stryker<sup>®<sup>‡</sup></sup> Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

> Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer

> > Angus Kan<sup>1</sup> and Yunseong Nam<sup>2,3</sup>

Article | Open Access | Published: 11 November 2021

SU(2) hadrons on a quantum computer via a variational approach

Yasar Y. Atas 🖂, Jinglei Zhang 🖾, Randy Lewis, Amin Jahanpour, Jan F. Haase 🖾 & Christine A. Muschik

Nature Communications 12, Article number: 6499 (2021)



Jesse Stryker

Formal & algorithmic developments for . . . gauge theories

## Digital simulations: SU(3)





#### esse Stryker Form

### Formal & algorithmic developments for . . . gauge theories

### Summary: Progress toward QCD

| arXiv ID         | Author     | Author     | Author     | Author   | Title                                                                                        |              | SU(2)        | SU(3) | NF | 1D           | 2D           | 3D           | evol. | prep. | meas. | alg.         | QPU          |
|------------------|------------|------------|------------|----------|----------------------------------------------------------------------------------------------|--------------|--------------|-------|----|--------------|--------------|--------------|-------|-------|-------|--------------|--------------|
| quant-ph/0510027 | Byrnes     | Yamamoto   |            |          | Simulating Lattice Gauge Theories on a Quantum Computer                                      | $\checkmark$ | $\checkmark$ |       | 0  | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |       |       |              |              |
| 1605.04570       | Martinez   | Muschik    | Schindler  | et al.   | Real-Time Dynamics of Lattice Gauge Theories with a Few-Qubit Quantum Computer               | $\checkmark$ |              |       | 1  | $\checkmark$ |              |              |       |       |       |              |              |
| 1803.03326       | Klco       | Dumitrescu | McCaskey   | et al.   | Quantum-Classical Computation of Schwinger Model Dynamics Using Quantum Computers            | $\checkmark$ |              |       | 1  | $\checkmark$ |              |              |       |       |       |              |              |
| 1908.06935       | Klco       | Savage     | JRS        |          | SU(2) Non-Abelian Gauge Field Theory in One Dimension on Digital Quantum Computers           |              |              |       | 0  | $\checkmark$ |              |              |       |       |       | $\checkmark$ |              |
| 2001.00698       | Kharzeev   | Kikuchi    |            |          | Real-Time Chiral Dynamics from a Digital Quantum Simulation                                  | $\checkmark$ |              |       | 1  | $\checkmark$ |              |              |       |       |       | $\checkmark$ |              |
| 2002.11146       | Shaw, AF   | Lougovski  | JRS        | Wiebe    | Quantum Algorithms for Simulating the Lattice Schwinger Model                                | $\checkmark$ |              |       | 1  | $\checkmark$ |              |              |       |       |       | $\checkmark$ |              |
| 2005.10271       | Mathis     | Mazzola    | Tavernelli |          | Toward Scalable Simulations of Lattice Gauge Theories on Quantum Computers                   | $\checkmark$ |              |       | 1  | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |       |       | $\checkmark$ |              |
| 2101.10227       | Ciavarella | Klco       | Savage     |          | Trailhead for Quantum Simulation of SU(3) Yang-Mills Lattice Gauge Theory in the Local Mu    |              |              |       | 0  |              |              |              |       |       |       | $\checkmark$ |              |
| 2102.08920       | Atas       | Zhang, J   | Lewis, R   | et al.   | SU(2) Hadrons on a Quantum Computer via a Variational Approach                               |              |              |       | 1  |              |              |              |       |       |       | $\checkmark$ | $\mathbf{i}$ |
| 2104.02024       | Cohen, T   | Lamm       | Lawrence   | Yamauchi | Quantum algorithms for transport coefficients in gauge theories                              |              | $\checkmark$ |       | -  |              | $\checkmark$ | $\checkmark$ |       |       |       | $\checkmark$ |              |
| 2107.12769       | Kan        | Nam, Y     |            |          | Lattice Quantum Chromodynamics and Electrodynamics on a Universal Quantum Computer           | $\checkmark$ | $\checkmark$ |       | 1  | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |       |       | $\checkmark$ |              |
| 2110.06942       | Tong, Y    | Albert, V  | McClean    | et al.   | Provably Accurate Simulation of Gauge Theories and Bosonic Systems                           | $\checkmark$ |              |       | 0  | $\checkmark$ | $\checkmark$ | $\checkmark$ |       |       |       | $\checkmark$ |              |
| 2112.09083       | Ciavarella | Chernyshev |            |          | Preparation of the SU(3) Lattice Yang-Mills Vacuum with Variational Quantum Methods          |              |              |       | 0  |              |              |              |       |       |       | $\checkmark$ | $\mathbf{i}$ |
| 2206.12454       | Clemente   | Crippa     | Jansen     |          | Strategies for the Determination of the Running Coupling of (2+1)-dimensional QED with Qua   |              |              |       | 1  |              | $\checkmark$ |              |       |       |       | $\checkmark$ |              |
| 2207.01731       | Farrell    | Chernyshev | Powell, S  | et al.   | Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (I)        |              |              |       | 2  | $\checkmark$ |              |              |       |       |       | $\checkmark$ | $\mathbf{i}$ |
| 2207.03473       | Atas       | Haase      | Zhang, J   | et al.   | Real-Time Evolution of SU(3) Hadrons on a Quantum Computer                                   |              |              |       | 1  | $\checkmark$ |              |              |       |       |       | $\checkmark$ | $\mathbf{i}$ |
| 2209.10781       | Farrell    | Chernyshev | Powell, S  | et al.   | Preparations for Quantum Simulations of Quantum Chromodynamics in 1+1 Dimensions: (II)       |              |              |       | 2  | $\checkmark$ |              |              |       |       |       | $\checkmark$ | $\mathbf{i}$ |
| 2211.10497       | Kane       | Grabowska  | Nachman    | Bauer    | Efficient quantum implementation of 2+1 U(1) lattice gauge theories with Gauss law constrain |              |              |       | 0  |              | $\checkmark$ |              |       |       |       | $\checkmark$ |              |
| 2212.14030       | Davoudi    | Shaw, AF   | JRS        |          | General Quantum Algorithms for Hamiltonian Simulation with Applications to a Non-Abelian     |              |              |       | 1  | $\checkmark$ |              |              |       |       |       | $\checkmark$ |              |

A selection of papers that have advanced the field closer to DQS of lattice QCD. Checkmarks indicate applicability to a given feature. Green indicates key milestones; gold indicates end-goals of a complete lattice QCD simulation. Notable omissions: scalar field theory, finite groups, formal developments, analog simulations.

evol. = time evolution, prep. = nontrivial state preparation, meas. = nontrivial observable measurement, alg. = constructive algorithms, QPU = includes hardware implementation.



Jesse Stryker

Impressive progress, but scaling hardware beyond 1-2 sites and lowest cutoffs - not worked out yet

Formal & algorithmic developments for . . . gauge theories

### Takeaway messages

- Theory developments and algorithms are still in very early stages
- Many different interesting questions to address: Gauss's law, basis choice, truncations, simulation protocols
- These are vibrant research directions and we are learning more about gauge theories every day – even before quantum-advantage simulations



lesse Stryker

