Quantum algorithms for Hamiltonian simulation of non-Abelian interactions

Jesse Stryker

Maryland Center for Fundamental Physics University of Maryland, College Park

UCLA virtual seminar Kang theory group 2023/02/23 collaboration w/ Z. Davoudi & A.F. Shaw (UMD) arXiv:2212.14030 [to appear in Quantum]

Big picture

Physics targets:

- Simulation of quantum chromodynamics
 - Hadronization
 - Microscopic understanding of nuclear interactions
- Complete phase diagram of QCD
- Equation of state for nuclear matter

How to make these predictions?

- Nonperturbative problems
 - Numerically simulate QCD degrees of freedom

Traditional lattice field theory

- Defines a field theory nonperturbatively
- Spacetime discretized with a lattice (e.g. square, cubic, hypercubic)
- Matter particles such as quarks are described "live" on the sites
- Gauge bosons live on oriented links joining sites
- Gauge fields belonging to some Lie group-the "gauge" group" G

UCLA 2023-05-30

Traditional lattice field theory

• Real-time dynamics and nonzero baryon density both suffer from 'sign problems' in classical simulations

Classical problems.. quantum solutions?

Digital quantum computers:

- Want to simulate gauge theory nonperturbatively
 - Gauge theory on the lattice
 - Hamiltonian lattice gauge theory
 - Has no apparent sign problems General problem: How to map a Hilbert space $\mathcal H$, and $\hat H$, on to qubits & quantum gates?

Outline

- Digital quantum simulation basics
- Hamiltonian lattice gauge theory basics
- Model: SU(2), 1+1, staggered fermions
 - Mass, electric, and hopping propagators
 - Costs
 - Loop-string-hadron reformulation and comparison
- Conclusion

lesse Stryker

Digital quantum simulation: Primitives

Qubits: Two-state quantum systems

Two-qubit computational basis: |00>, |01>, |10>, |11>

UCLA 2023-05-30

Nielsen & Chuang (2001)

Quantum algorithms for Hamiltonian simulation [...]

Digital quantum simulation: Frameworks

'Near-term' and 'far-term' algorithms

NISQ era, near term

- Fewer qubits
- Limited connectivity
- No error correction
- Entangling gates (CNOT) costly

Credit: Google, Erik Lucero

Fault tolerant regime, far term

- Plenty of qubits
- High connectivity
- Error correction
- Non-Clifford operations (T gate) costly

Digital quantum simulation: Work flow

- Three main steps
- 1. Initial state preparation
- 2. Time evolution
- 3. Measurements

lesse Stryker

This work: Time evolution only - time evolution can be part of state preparation or measurements

Digital quantum simulation: Time evolution

Trotterization: Evolve for time *t* in *s* steps,

$$e^{-itH} = \left(e^{-i\frac{t}{s}H}\right)^s$$

Product formulas: Approximate exponential of a sum by product of exponentials

$$e^{-i\,\delta t\,\sum_k H_k} \simeq \prod_k e^{-i\,\delta t\,H_k}$$

Simplest case: Same ordering of *H_k* in every step Generalizations: Higher-order Trotter; randomized

Jesse Stryker

Hamiltonian lattice gauge theory

- Temporal gauge, continuous-time limit → Kogut-Susskind Hamiltonian formulation
- Gauge fields on spatial links with on-link Hilbert spaces
- E.g., SU(2)

Left and right electric fields each have colorcharge components, in addition to spatial components

Phys. Rev. D 11, 395 (1975)

$$\begin{aligned} [\hat{E}_{L/R}^{\alpha}, \hat{E}_{L/R}^{\beta}] &= i f^{\alpha\beta\gamma} \hat{E}_{L/R}^{\gamma} \\ [\hat{E}_{R}^{\alpha}, \hat{U}_{mm'}] &= \left(\hat{U}T^{\alpha}\right)_{mm'} \\ [\hat{E}_{L}^{\alpha}, \hat{U}_{mm'}] &= -\left(T^{\alpha}\hat{U}\right)_{mm'} \end{aligned}$$

canonical commutation relations for a link

UCLA 2023-05-30

3-sphere graphic credit: © 2006 by Eugene Antipov Dual-licensed under the GFDL and CC BY-SA 3.0

Gauge transformations: $\hat{U}_{n,i} \rightarrow \Omega_n \hat{U}_{n,i} \Omega_{n+e_i}^{\dagger}$

 Rotations from the left (Ω_n) and right (Ω_{n+ei}) are generated by "left" and "right" electric fields

Quantum algorithms for Hamiltonian simulation [...]

Hamiltonian lattice gauge theory

A feel for the on-link operators and states of SU(2):

 $E_R^3 |j, M, M'\rangle = M' |j, M, M'\rangle$ $E_R^{\alpha} E_R^{\alpha} |j, M, M'\rangle = j(j+1) |j, M, M'\rangle$

$$U_{m,m'} | j, M, M' \rangle = C_{+}(j, m, m', M, M') | j + 1/2, M + m, M' + m' \rangle + C_{-}(j, m, m', M, M') | j - 1/2, M + m, M' + m'$$

Off-diagonal SU(2) link operator

$$\hat{H}_E = \frac{g^2}{2} \sum_{n,i} \hat{E}^{\alpha}_{n,i} \hat{E}^{\alpha}_{n,i}$$

$$\hat{H}_B = -\sum_n \frac{1}{2g^2} \operatorname{tr}(\hat{U}_{n,\Box} + \hat{U}_{n,\Box}^{\dagger})$$

Hamiltonian lattice gauge theory

Formulation, basis considerations

- Different bases/formulations → different costs
- For gauge theories in particular, numerous *formulations*
- Examples:
 - Kogut-Susskind, electric or group-element basis Zohar, NuQS collab., et al.
 - dual or magnetic variables Kaplan, JRS, Bauer, Grabowska
 & tensor formulations Meurice, Unmuth-Yockey, et al.
 - purely fermionic formulation Atas, J. Zhang, IQuS@UW group, Powell, et al.
 - local-multiplet basis Klco, Savage, JRS, Ciavarella
 - gauge magnets/quantum link models Wiese, Chandrasekharan, et al.
 - prepotential/Schwinger boson formulations *Mathur, Anishetty, Raychowdhury, et al.*
 - loop-string-hadron formulation Raychowdhury, JRS, Dasgupta, Kadam
 - light-front formulation Kreshchuk, Kirby, Love, Yao, et al.
 - qubit models Chandrasekharan, Singh, et al.
- Most common basis choice: **Electric/irrep**

Formulation, basis considerations

Electric-basis pros

- States naturally discretized (for compact Lie groups)
- Gauss's law a function of electric fields
- Natural "UV" truncation scheme
 - Easily translates to truncating operators

Electric-basis <u>cons</u>

- Better-suited to strong coupling (opposite of continuum QCD)
- Many off-diagonal operators in 3+1 Hamiltonian

Formulation, basis considerations

Group-element basis pros

- Link operators are diagonalized
- No Clebsch-Gordon coefficients
- Well-suited for weak-coupling limit

A detail of Spinoza monument in Amsterdam. © Dmitry Feichtner-Kozlov

Group-element basis <u>cons</u>

- Limited number of regular subgroups for SU(N)
 - Limited "resolution" with subgroups
 - 120 elements for SU(2)
 - 1080 for SU(3)
- Subsets generally do not preserve gauge symmetry
- Electric fields become tricky (next slide)

Model: SU(2), 1+1, staggered fermions

- Prototype non-Abelian gauge theory: SU(2)
 - Nontrivial representation theory
 - Similar complications to SU(3), fewer DOFs
- Keep the 1+1-D gauge fields
 - Remain representative of D>1+1
- Matter: fundamental 'quarks'
- Involves link operators but lacks plaquettes

© 2006 by Eugene Antipov / Dual-licensed under the GFDL and CC BY-SA 3.0

lesse Stryker

Model: SU(2), 1+1, staggered fermions

$$H = \sum_{r} E^{\alpha}(r) E^{\alpha}(r) \qquad \} H_{E} \qquad E^{\alpha} : \text{chromoelectric field} \\ \alpha = 1, 2, 3 \quad (\text{adjoint rep}) \\ \downarrow^{\text{bare}} + \mu \sum_{r} (-)^{r} \psi^{\dagger}(r) \psi(r) \qquad \} H_{M} \quad \psi(r) = \begin{pmatrix} \psi_{1}(r) \\ \psi_{2}(r) \end{pmatrix} \text{ fermionic color components} \\ \downarrow^{\text{trength}} + x \sum_{r} \psi^{\dagger}(r) \psi(r + 1) U(r) + H c \qquad \} H_{L} \qquad \psi^{\dagger}(r) U(r) \psi(r + 1) + \text{H.c.}:$$

 $\sum_{r} \psi^{\dagger}(r)\psi(r+1)U(r) + \text{H.c.} \quad \} H_{I}$ minimally-coupled "hopping term"

- We consider Schwinger boson (SB) formulation
 - SB ~ Kogut-Susskind, but more symmetric Hilbert space
 - Kogut-Susskind considered by Kan & Nam (arXiv:2107.12769)

Model: SU(2), 1+1, staggered fermions

Schwinger boson DOFs

Jesse Stryker 👘 🛛 Quantum algorit

Trotterization & diagonal terms H_M , H_E

$$\exp(-i\,\delta t(H_M + H_E + H_I)) \simeq \prod_r e^{-i\,\delta t H_I(r)} e^{-i\,\delta t H_E(r)} e^{-i\,\delta t H_M(r)}$$

 H_M, H_E : Diagonal, "easy" to decompose with elementary gates exactly (easy != efficient)

$$E^{\alpha}E^{\alpha}\left|j,m_{L},m_{R}\right\rangle_{KS} = j(j+1)\left|j,m_{L},m_{R}\right\rangle_{KS}$$

Basic idea: Compute the function of occupation numbers into auxiliary register, then use "phase kickback" to effect $e^{-i\,\delta t E^{lpha}E^{lpha}}$

Electric propagators

Diagonal "easy," given a function *f*(*n*) and phase kickback:

$$\begin{split} \mathcal{U}_{f} \left| n \right\rangle \left| 0 \right\rangle_{\text{aux}} &= \left| n \right\rangle \left| f(n) \right\rangle_{\text{aux}} \\ e^{i\phi \hat{N}_{\text{aux}}} \left| n \right\rangle \left| f(n) \right\rangle_{\text{aux}} &= e^{i\phi f(n)} \left| n \right\rangle \left| f(n) \right\rangle_{\text{aux}} \\ \mathcal{U}_{f}^{\dagger} e^{i\phi f(n)} \left| n \right\rangle \left| f(n) \right\rangle_{\text{aux}} &= e^{i\phi f(n)} \left| n \right\rangle \left| 0 \right\rangle_{\text{aux}} \end{split}$$

Can still be inefficient – evaluating *f*(*n*) may be costly

 $E^{\alpha}E^{\alpha}\left|j,m_{L},m_{R}\right\rangle_{KS} = j(j+1)\left|j,m_{L},m_{R}\right\rangle_{KS}$

Lattice gauge theory H_{E} only calls for addition and multiplication Cost of j(j+1) dominated by a single multiplier

Hopping terms

$$\begin{split} H_{\rm hop}/x &= \sum_{m,n} \psi_m^{\dagger} \chi_n U_{mn} + {\rm H.c.} & \text{(Schwinger boson formulation)} \\ U &= \frac{1}{\sqrt{a^{\dagger} \cdot a + 1}} \begin{pmatrix} -a_1 b_2 + a_2^{\dagger} b_1^{\dagger} & a_1 b_1 + a_2^{\dagger} b_2^{\dagger} \\ -a_2 b_2 - a_1^{\dagger} b_1^{\dagger} & a_2 b_1 - a_1^{\dagger} b_2^{\dagger} \end{pmatrix} \frac{1}{\sqrt{a^{\dagger} \cdot a + 1}} \\ &\equiv \begin{pmatrix} -A_1 b_2 + A_2^{\dagger} b_1^{\dagger} & A_1 b_1 + A_2^{\dagger} b_2^{\dagger} \\ -A_2 b_2 - A_1^{\dagger} b_1^{\dagger} & A_2 b_1 - A_1^{\dagger} b_2^{\dagger} \end{pmatrix} & \text{(absorbed inverse roots into } A_k \end{split}$$

$$H_{\rm hop} = \sum_{j=1}^{8} H_{\rm hop}^{(j)}$$
 $\nu = 8$ $[H_I^{(i)}(r), ...$

$$H_{\rm hop}^{(8)}/x = -\sigma_2^+ A_1 \sigma_3^- b_1 + \text{H.c.}$$

$$[H_{I}^{(i)}(r), H_{I}^{(j)}(r)] \neq 0$$

- *G*³ conserved by each subterm (*G*³ eigenbasis)
- Abelian Gauss law conserved too

Hopping (sub)terms

- *Z*-rotation on fermionic qubit 2, controlled by fermionic qubit 3, with phase depending on three occupation numbers of a_1 , a_2 , b_1
- The reduction from $64 \rightarrow 8$ simulated terms improves the Trotterization error bound * JRS. [2105.11548] Jesse Stryker Quantum algorithms for Hamiltonian simulation [...] UCLA 2023-05-30 23

Hopping terms

Jesse Stryker

Simulating any one hopping subterm

Instead of j(j+1) or similar, this requires evaluating

$$\mathcal{D}^{\rm SB}(p,q,p') \equiv \sqrt{\frac{p\,q}{(p+p')(p+p'+1)}}$$

Hopping terms

Single iteration of Newton's method involving numerous multipliers of increasing size

Phase evaluation circuit involving multiple rounds of Newton's method iterations

Jesse Stryker

Resource costs of SB formulation

- Cost of simulation scales with desired error
- One metric: Spectral norm error of time-evolution operator
- Sources of error
 - Trotterization
 - Truncated function evaluation
 - Imperfect rotation gates ("synthesis" error)

Resource costs of SB formulation

m/g	x	η	L	t/a_s	Δ	$\alpha_{\mathrm{Trot.}}$	$\alpha_{\rm Newt.}$	Qubits	T gates
1	1	4	100	1	0.01	90%	9%	2626	$8.19713 imes 10^{11}$
1	1	4	100	1	0.001	90%	9%	2704	$3.09951 imes 10^{12}$
1	1	4	100	10	0.01	90%	9%	2704	3.0993×10^{13}
1	1	4	100	10	0.001	90%	9%	2808	1.2146×10^{14}
1	1	4	1000	1	0.01	90%	9%	18904	$3.12769 imes 10^{13}$
1	1	4	1000	1	0.001	90%	9%	19008	1.22564×10^{14}
1	1	4	1000	10	0.01	90%	9%	19008	1.22564×10^{15}
1	1	4	1000	10	0.001	90%	9%	19086	4.48657×10^{15}
1	1	8	100	1	0.01	90%	9%	4398	5.79224×10^{12}
1	1	8	100	1	0.001	90%	9%	4476	2.1482×10^{13}
1	1	8	100	10	0.01	90%	9%	4476	2.14816×10^{14}
1	1	8	100	10	0.001	90%	9%	4580	$8.22615 imes 10^{14}$
1	1	8	1000	1	0.01	90%	9%	35076	2.16773×10^{14}
1	1	8	1000	1	0.001	90%	9%	35180	$8.30098 imes 10^{14}$
1	1	8	1000	10	0.01	90%	9%	35180	$8.30094 imes 10^{15}$
1	1	8	1000	10	0.001	90%	9%	35258	2.99214×10^{16}
1	10	4	100	1	0.01	90%	9%	2626	5.7715×10^{11}
1	10	4	100	1	0.001	90%	9%	2704	2.18285×10^{12}
1	10	4	100	10	0.01	90%	9%	2704	2.18258×10^{13}
1	10	4	100	10	0.001	90%	9%	2808	8.55326×10^{13}
1	10	4	1000	1	0.01	90%	9%	18904	2.2027×10^{13}
1	10	4	1000	1	0.001	90%	9%	19008	8.63137×10^{13}
1	10	4	1000	10	0.01	90%	9%	19008	8.63103×10^{14}
1	10	4	1000	10	0.001	90%	9%	19086	3.15948×10^{15}
1	10	8	100	1	0.01	90%	9%	4398	1.33288×10^{12}
1	10	8	100	1	0.001	90%	9%	4476	4.94102×10^{12}
1	10	8	100	10	0.01	90%	9%	4476	4.94053×10^{13}
1	10	8	100	10	0.001	90%	9%	4580	1.89192×10^{14}
1	10	8	1000	1	0.01	90%	9%	35076	4.98595×10^{13}
1	10	8	1000	1	0.001	90%	9%	35180	1.9092×10^{14}
1	10	8	1000	10	0.01	90%	9%	35180	1.90912×10^{15}
1	10	8	1000	10	0.001	90%	9%	35258	6.88164×10^{15}

Far-term simulation costs as a function of Hamiltonian parameters (m/g,x,L) and $\Lambda=2^{n}-1$, evolution time (t/a_s) , and desired bound on the controlled sources of error (Δ). Qubit counts are the sum of qubits needed to represent lattice DOFs and ancilla qubits used for implementing the time evolution.

m/g	$\Delta_{\text{Trot.}}$	x	L	η	t/a_s	Qubits	Min. s	Min. CNOTs
1	10%	0.1	10	2	1	92	186	4.8613×10^{6}
1	10%	0.1	10	2	5	92	2072	$5.41538 imes10^7$
1	10%	0.1	10	4	1	164	433	$5.21403 imes10^8$
1	10%	0.1	10	4	5	164	4841	$5.82936 imes10^9$
1	10%	0.1	20	2	1	192	262	1.44561×10^7
1	10%	0.1	20	2	5	192	2929	$1.61611 imes 10^8$
1	10%	0.1	20	4	1	344	613	$1.55832 imes 10^9$
1	10%	0.1	20	4	5	344	6846	$1.74034 imes 10^{10}$
1	10%	1	10	2	1	92	102	2.66587×10^6
1	10%	1	10	2	5	92	1133	2.96121×10^7
1	10%	1	10	4	1	164	129	$1.55337 imes 10^8$
1	10%	1	10	4	5	164	1432	$1.72436 imes 10^9$
1	10%	1	20	2	1	192	144	7.94534×10^{6}
1	10%	1	20	2	5	192	1602	$8.8392 imes 10^7$
1	10%	1	20	4	1	344	182	4.62667×10^8
1	10%	1	20	4	5	344	2024	$5.14526 imes10^9$
1	5%	0.1	10	2	1	92	262	$6.84763 imes10^6$
1	5%	0.1	10	2	5	92	2929	$7.65523 imes10^7$
1	5%	0.1	10	4	1	164	613	$7.38153 imes10^8$
1	5%	0.1	10	4	5	164	6846	8.24371×10^9
1	5%	0.1	20	2	1	192	371	$2.04703 imes 10^7$
1	5%	0.1	20	2	5	192	4143	2.28594×10^8
1	5%	0.1	20	4	1	344	866	2.20148×10^9
1	5%	0.1	20	4	5	344	9682	2.46128×10^{10}
1	5%	1	10	2	1	92	144	3.76358×10^{6}
1	5%	1	10	2	5	92	1602	4.18699×10^7
1	5%	1	10	4	1	164	182	2.19158×10^{8}
1	5%	1	10	4	5	164	2024	2.43723×10^9
1	5%	1	20	2	1	192	203	1.12007×10^7
1	5%	1	20	2	5	192	2266	1.25029×10^8
1	5%	1	20	4	1	344	257	6.53326×10^8
1	5%	1	20	4	5	344	2863	7.2781×10^9

Near-term simulation costs as a function of Hamiltonian parameters (m/g_x ,L, and η), evolution time (t/a_s =2 x T), and desired bound on the controlled sources of error (Δ_{Trot}). Qubit counts are the register size of the lattice and exclude possible ancilla qubits (which are insignificant in the near-term circuits cost). Other tabulated costs are the minimal required number of second-order Trotter steps (based on our second-order Trotterization scheme) and the associated CNOT-gate count (for the naive circuitization approach based on the full Pauli decomposition of diagonal phase functions) in the zero-noise limit.

Jesse Stryker

Quantum algorithms for Hamiltonian simulation [...]

27

LSH reformulation

Jesse Stryker

LSH reformulation

LSH operators define an SU(2)-singlet basis

- Take a reference state, e.g., 0 flux & 0 fermions
- Act locally with any product of LSH operators
- Result is SU(2)-invariant

esse Stryker

$$\begin{split} ||n_{l}, n_{i} &= 0, n_{o} = 0 \rangle \equiv (\mathcal{L}^{++})^{n_{l}} |0 \rangle \\ ||n_{l}, n_{i} &= 0, n_{o} = 1 \rangle \equiv (\mathcal{L}^{++})^{n_{l}} \mathcal{S}_{\text{out}}^{++} |0 \rangle \\ ||n_{l}, n_{i} &= 1, n_{o} = 0 \rangle \equiv (\mathcal{L}^{++})^{n_{l}} \mathcal{S}_{\text{in}}^{++} |0 \rangle \\ ||n_{l}, n_{i} &= 1, n_{o} = 1 \rangle \equiv (\mathcal{L}^{++})^{n_{l}} \mathcal{H}^{++} |0 \rangle \end{split}$$

$$\boxed{ \boxed{ } } \begin{cases} n_l \\ n_i = 0, n_o = 0 \end{cases} \qquad n_i = 0, n_o = 1 \qquad \mathcal{N}_{\psi} = \mathcal{N}_i + \mathcal{N}_o \\ n_i = 0, n_o = 1 \qquad \mathcal{N}_L = \mathcal{N}_l + \mathcal{N}_o (1 - \mathcal{N}_i) \\ \mathcal{N}_R = \mathcal{N}_l + \mathcal{N}_i (1 - \mathcal{N}_o) \\ \end{array}$$

$$\boxed{ \boxed{ } } n_i = 1, n_o = 0 \qquad n_i = 1, n_o = 1$$

LSH reformulation

Easy terms

$$\begin{split} \hat{H}_M &\to m_0 \sum_x (-)^x \mathcal{N}_{\psi}(x) \\ \hat{H}_E &\to \frac{g_0^2}{4} \sum_x \left[\frac{1}{2} \mathcal{N}_R(x) \left(\frac{1}{2} \mathcal{N}_R(x) + 1 \right) \right. \\ &\left. + \frac{1}{2} \mathcal{N}_L(x) \left(\frac{1}{2} \mathcal{N}_L(x) + 1 \right) \right] \end{split}$$

Hard terms

$$\begin{split} \hat{H}_{I} &\to \sum_{x} \frac{1}{\sqrt{\mathcal{N}_{L}(x)+1}} \left[\sum_{\sigma=\pm} \mathcal{S}_{\text{out}}^{+,\sigma}(x) \mathcal{S}_{\text{in}}^{\sigma,-}(x+1) \right] \\ &\times \frac{1}{\sqrt{\mathcal{N}_{R}(x+1)+1}} + \text{H.c.} \\ x) \hat{U}_{L}(x) &= \frac{1}{\sqrt{\mathcal{N}_{L}(x)+1}} \left(\begin{array}{c} \mathcal{S}_{\text{out}}^{++}(x), & \mathcal{S}_{\text{out}}^{+-}(x) \\ \mathcal{N}_{\text{out}}(x) + 1 \end{array} \right), \\ \hat{R}(x) \hat{\psi}(x) &= \left(\begin{array}{c} \mathcal{S}_{\text{in}}^{+-}(x) \\ \mathcal{S}_{\text{in}}^{--}(x) \end{array} \right) \frac{1}{\sqrt{\mathcal{N}_{R}(x)+1}} . \end{split}$$

Important: $\nu = 2$

Jesse Stryker

Quantum algorithms for Hamiltonian simulation [...] UCLA 2023-05-30

ŵ

Û

SU(2) LSH vs Schwinger bosons

							Schw	inger bosons	LSH		
x	η	L	t/a_s	Δ	$\alpha_{\text{Trot.}}$	$\alpha_{\text{Newt.}}$	Qubits	T gates	Qubits	T gates	
1	4	100	1	0.01	90%	9%	2626	$8.19713 imes 10^{11}$	1319	$3.91817 imes 10^{10}$	
1	4	100	1	0.001	90%	9%	2704	3.09951×10^{12}	1397	1.5172×10^{11}	
1	4	100	10	0.01	90%	9%	2704	3.0993×10^{13}	1397	$1.51643 imes 10^{12}$	
1	4	100	10	0.001	90%	9%	2808	1.2146×10^{14}	1475	$5.76229 imes 10^{12}$	
1	4	1000	1	0.01	90%	9%	18904	3.12769×10^{13}	6797	1.53099×10^{12}	
1	4	1000	1	0.001	90%	9%	19008	1.22564×10^{14}	6875	5.81562×10^{12}	
1	4	1000	10	0.01	90%	9%	19008	1.22564×10^{15}	6875	5.81468×10^{13}	
1	4	1000	10	0.001	90%	9%	19086	4.48657×10^{15}	6979	2.29217×10^{14}	
1	8	100	1	0.01	90%	9%	4398	5.79224×10^{12}	1807	2.72735×10^{11}	
1	8	100	1	0.001	90%	9%	4476	2.1482×10^{13}	1885	1.03709×10^{12}	
1	8	100	10	0.01	90%	9%	4476	2.14816×10^{14}	1885	1.03705×10^{13}	
1	8	100	10	0.001	90%	9%	4580	8.22615×10^{14}	1963	3.87886×10^{13}	
1	8	1000	1	0.01	90%	9%	35076	2.16773×10^{14}	10885	1.04652×10^{13}	
1	8	1000	1	0.001	90%	9%	35180	$8.30098 imes 10^{14}$	10963	$3.91414 imes 10^{13}$	
1	8	1000	10	0.01	90%	9%	35180	8.30094×10^{15}	10963	3.91412×10^{14}	
1	8	1000	10	0.001	90%	9%	35258	2.99214×10^{16}	11067	1.5154×10^{15}	

T-gate costs at fixed m/g=1. Other simulation parameters not explicitly shown are $\eta = 8$, $t/\alpha_s = 1$, $\alpha_{\text{Trot.}} = 90\%$, $\alpha_{\text{Newt.}} = 9\%$, and $\alpha_{\text{synth.}} = 1\%$.

Z. Davoudi, A.F. Shaw, & JS arXiv:2212.14030

~20x T gate reduction with LSH

Conclusions

- Reproducing Clebsch-Gordon coefficients for non-Abelian gauge links dominates the circuit cost
- LSH formulation can give significant pre-factor savings (or even better scaling) over Schwinger-boson/Kogut-Susskind formulation
- Splitting of costly terms impacts both number of costly subroutines and size of calculated error bound
- Seeking circuitizable subterms that conserve symmetries can lead to more efficient splittings

Thank you for your attention

Jesse Stryker