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Physics targets:
● Simulation of quantum chromodynamics

● Hadronization
● Microscopic understanding of nuclear interactions

● Complete phase diagram of QCD
● Equation of state for nuclear matter

How to make these predictions?
● Nonperturbative problems

➔ Numerically simulate QCD degrees of freedom

Conjectured phase diagram credit: G. Endrödi J.Phys.Conf.Ser. 503 (2014) 012009

Big picture

https://doi.org/10.1016/j.physa.2014.11.005
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Traditional lattice field theory
● Defines a field theory nonperturbatively

● Spacetime discretized with a lattice (e.g. square, 
cubic, hypercubic)

● Matter particles such as quarks are described “live” on 
the sites

● Gauge bosons live on oriented links joining sites

● Gauge fields belonging to some Lie group–the “gauge 
group” G
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“link operator” matrices in gauge group G  

Wilson’s gauge action, SW

for non-Abelian
● In classical simulations, exp(-SW) acts like a probably weight for the 

configuration

● Real-time dynamics and nonzero baryon density both suffer from ‘sign 
problems’ in classical simulations

“plaquette” operator

Traditional lattice field theory
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Classical problems.. quantum solutions?
Digital quantum computers:

General problem:

How to map a Hilbert 

space          , and          , on to

qubits & quantum gates?

● Unitary gates:   with Hamiltonian of 
interest

● Want to simulate gauge theory 
nonperturbatively
➔ Gauge theory on the lattice
➔ Hamiltonian lattice gauge theory

● Has no apparent sign problems
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Outline
● Digital quantum simulation basics
● Hamiltonian lattice gauge theory basics
● Model: SU(2), 1+1, staggered fermions

– Mass, electric, and hopping propagators
– Costs 
– Loop-string-hadron reformulation and comparison

● Conclusion
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Qubits: Two-state quantum systems Two-qubit computational basis:
|00>, |01>, |10>, |11>

Nielsen & Chuang (2001)

“computational 
basis”

Digital quantum simulation: Primitives
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Digital quantum simulation: Frameworks
‘Near-term’ and ‘far-term’ algorithms

  NISQ era, near term
● Fewer qubits
● Limited connectivity
● No error correction
● Entangling gates (CNOT) 

costly

Fault tolerant regime, far term
● Plenty of qubits
● High connectivity
● Error correction
● Non-Clifford operations

(T gate) costly

Credit: Google, Erik Lucero
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Digital quantum simulation: Work flow
Three main steps
1. Initial state preparation
2. Time evolution
3. Measurements

This work: Time evolution only
- time evolution can be part of state preparation or 
measurements
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Digital quantum simulation: Time evolution
Trotterization: Evolve for time t in s steps,

Product formulas: Approximate exponential of a sum 
by product of exponentials

Simplest case: Same ordering of Hk in every step
Generalizations: Higher-order Trotter; randomized
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Hamiltonian lattice gauge theory
● Temporal gauge, continuous-time limit  Kogut-Susskind Hamiltonian formulation→
● Gauge fields on spatial links with on-link Hilbert spaces
● E.g., SU(2)

irrep
basis

canonical commutation relations for a link

Gauge transformations:
● Rotations from the left (Ωn) and right (Ωn+ei) are 

generated by “left” and “right” electric fields

Left and right electric 
fields each have color-
charge components, 
in addition to spatial 
components

Phys. Rev. D 11, 395 (1975)

3-sphere graphic credit: © 2006 by Eugene Antipov Dual-licensed under the GFDL and CC BY-SA 3.0

group-
element
basis

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.11.395
http://creativecommons.org/licenses/by-sa/3.0/
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Hamiltonian lattice gauge theory
A feel for the on-link operators and states of SU(2):

Off-diagonal SU(2) link operator
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Hamiltonian lattice gauge theory
Plus Gauss law constraints

Gauss’s law

charge 
conservation

gauge 
invariance

U(1)

SU(N)

compact U(1)
electric eigenbasis
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Formulation, basis considerations
● Different bases/formulations  different costs→
● For gauge theories in particular, numerous formulations
● Examples:

● Kogut-Susskind, electric or group-element basis        Zohar, NuQS collab., et al.
● dual or magnetic variables        Kaplan, JRS, Bauer, Grabowska

& tensor formulations        Meurice, Unmuth-Yockey, et al.
● purely fermionic formulation        Atas, J. Zhang, IQuS@UW group, Powell, et al.
● local-multiplet basis        Klco, Savage, JRS, Ciavarella
● gauge magnets/quantum link models        Wiese, Chandrasekharan, et al.
● prepotential/Schwinger boson formulations        Mathur, Anishetty, Raychowdhury, et al.
● loop-string-hadron formulation        Raychowdhury, JRS, Dasgupta, Kadam
● light-front formulation        Kreshchuk, Kirby, Love, Yao, et al.
● qubit models        Chandrasekharan, Singh, et al.

● Most common basis choice: Electric/irrep
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Formulation, basis considerations
Electric-basis pros
● States naturally discretized (for 

compact Lie groups)
● Gauss’s law a function of electric 

fields
● Natural “UV” truncation scheme

● Easily translates to truncating 
operators 

Electric-basis cons
● Better-suited to strong coupling 

(opposite of continuum QCD)
● Many off-diagonal operators in 

3+1 Hamiltonian  
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Formulation, basis considerations

A detail of Spinoza monument in 
Amsterdam. © Dmitry Feichtner-Kozlov

Group-element basis pros
● Link operators are diagonalized
● No Clebsch-Gordon coefficients
● Well-suited for weak-coupling limit

Group-element basis cons
● Limited number of regular 

subgroups for SU(N)
● Limited “resolution” with 

subgroups
● 120 elements for SU(2)
● 1080 for SU(3)

● Subsets generally do not 
preserve gauge symmetry

● Electric fields become tricky 
(next slide)
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Model: SU(2), 1+1, staggered fermions
● Prototype non-Abelian gauge theory: SU(2)

● Nontrivial representation theory
● Similar complications to SU(3), fewer DOFs

● Keep the 1+1-D gauge fields
● Remain representative of D>1+1 

● Matter: fundamental ‘quarks’
● Involves link operators but lacks plaquettes

© 2006 by Eugene Antipov / Dual-licensed 
under the GFDL and CC BY-SA 3.0

http://creativecommons.org/licenses/by-sa/3.0/
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bare 
mass

Model: SU(2), 1+1, staggered fermions
chromoelectric field

(adjoint rep)

fermionic color 
components

minimally-coupled “hopping term”

interaction 
strength

● We consider Schwinger boson (SB) formulation
● SB ~ Kogut-Susskind, but more symmetric Hilbert space
● Kogut-Susskind considered by Kan & Nam (arXiv:2107.12769)
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Schwinger boson 
DOFs

Model: SU(2), 1+1, staggered fermions
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Diagonal, “easy” to decompose with elementary gates exactly   (easy != efficient)

Basic idea: Compute the function of occupation numbers into auxiliary 
register, then use “phase kickback” to effect

Trotterization & diagonal terms HM, HE
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Electric propagators
Diagonal “easy,” given a function f(n) and phase kickback:

Can still be inefficient – evaluating f(n) may be costly

Lattice gauge theory HE only calls for addition and multiplication
Cost of j(j+1) dominated by a single multiplier
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Hopping terms

(absorbed inverse roots into Ak)

(Schwinger boson formulation)

● G3 conserved by each subterm (G3 
eigenbasis)

● Abelian Gauss law conserved too
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Hopping (sub)terms
Three shears* to prepare for rotation:

● Z-rotation on fermionic qubit 2, controlled by fermionic qubit 3, with phase depending on three 
occupation numbers of a1, a2, b1

● The reduction from 64  8 simulated terms improves the Trotterization error bound→ * JRS. [2105.11548]

https://arxiv.org/abs/2105.11548
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Hopping terms
Simulating any one hopping subterm

Instead of j(j+1) or similar, this 
requires evaluating



Jesse Stryker Quantum algorithms for Hamiltonian simulation [...] UCLA 2023-05-30 25

Hopping terms

Phase evaluation circuit involving multiple rounds of Newton’s method iterations

Single iteration of Newton’s method involving 
numerous multipliers of increasing size
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Resource costs of SB formulation
● Cost of simulation scales with desired error
● One metric: Spectral norm error of time-evolution 

operator
● Sources of error

– Trotterization
– Truncated function evaluation
– Imperfect rotation gates (“synthesis” error)
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Resource costs of SB formulation

text
● text

Far-term simulation costs as a function of Hamiltonian parameters  
(m/g,x,L, and Λ=2η-1), evolution time (t/as), and desired bound on the 
controlled sources of error (Δ). Qubit counts are the sum of qubits 
needed to represent lattice DOFs and ancilla qubits used for 
implementing the time evolution.

Near-term simulation costs as a function of Hamiltonian parameters (m/g,x,L, and η), 
evolution time (t/as=2 x T ), and desired bound on the controlled sources of error 
(ΔTrot). Qubit counts are the register size of the lattice and exclude possible ancilla 
qubits (which are insignificant in the near-term circuits cost). Other tabulated costs 
are the minimal required number of second-order Trotter steps (based on our 
second-order Trotterization scheme) and the associated CNOT-gate count (for the 
naive circuitization approach based on the full Pauli decomposition of diagonal 
phase functions) in the zero-noise limit.
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LSH reformulation

Loop-string-hadron 
formulation is derived 
from SB formulation but 
uses fewer bosonic DOFs 
per site. Every field is 
strictly SU(2) invariant
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LSH reformulation
LSH operators define an SU(2)-singlet basis
● Take a reference state, e.g., 0 flux & 0 fermions
● Act locally with any product of LSH operators
● Result is SU(2)-invariant

The “catch” of this framework is non-automatic flux conservation along links.
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LSH reformulation

Easy terms Hard terms

Important: 
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SU(2) LSH vs Schwinger bosons

T-gate costs at fixed m/g=1. Other simulation parameters not 
explicitly shown are η = 8, t/as = 1, αTrot. = 90%, αNewt. = 9%, and αsynth. 
= 1%.

~20x T gate reduction with LSH

Z. Davoudi, A.F. Shaw, & JS
arXiv:2212.14030
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Conclusions
● Reproducing Clebsch-Gordon coefficients for non-Abelian 

gauge links dominates the circuit cost
● LSH formulation can give significant pre-factor savings (or even 

better scaling) over Schwinger-boson/Kogut-Susskind 
formulation

● Splitting of costly terms impacts both number of costly 
subroutines and size of calculated error bound

● Seeking circuitizable subterms that conserve symmetries can 
lead to more efficient splittings
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FIN

Thank you for your attention
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